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Abstract

Delamination buckling and growth in compressively loaded elastic-layered plates is analyzed. The delamination
growth process is assumed to start from an initial interlaminar adhesion defect and propagate as induced by
buckling. The relevant governing equations for buckling and initial postbuckling are developed by employing

asymptotic analysis results. The energy release rate concept is then applied to analyze delamination growth. Two
techniques are analyzed, namely the global energy approach and the local J-integral approach. For the two cases,
the e�ects of the asymptotic approach accuracy on the postbuckling and delamination growth are investigated. A
general model of the plate is proposed, in which a global instability of the whole plate can occur together with a

local instability of the layers. In addition, simpli®ed models are examined which may be useful in many engineering
applications, although based on hypotheses about the plate geometry. Finally, the numerical results show the
e�ectiveness of the developed models. Comparisons between the general model and the thin ®lm approximation

show the convergence of the former to the latter. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Composite structures exhibit notable mechanical characteristics, such as high strength-to-weight and
sti�ness-to-weight ratios; as a result, they are widely used in many ®elds of structural engineering. On
the other hand, the global behaviour of such structures can be adversely a�ected by the presence of
structural defects, such as delaminations which can arise from manufacturing processes, for instance,
shocks in assembling procedures. These can drastically reduce the sti�ness characteristics and the
maximum load carrying capacity of the structure.

Delamination buckling and growth in composites was analyzed by Chai et al. (1981), Bottega and
Maewal (1983), Yin (1985), Evans and Hutchinson (1984), Yin et al. (1986), Bruno (1988), Bruno and
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Grimaldi (1990), Larsson (1991), Kardomateas (1993), Sheinman and Kardomateas (1997) and
Sheinman et al. (1998). In these works di�erent approaches were used, leading in some cases to di�erent
results. Experimental results on delamination buckling were given by Kardomateas (1990) and Comiez
et al. (1995).

The aim of the present paper is to investigate the delamination and growth phenomena in
layered plates, as related to the analysis of the maximum load carrying capacity and structural
reliability of these structures. The delamination buckling of layered plates is analyzed by modeling
the delamination growth, both by the path independent integral technique, leading to a
delamination condition of local type involving stresses at the crack tip, and by an approach of a
global type, in which the energy release rate is evaluated as the ®rst variation of the total
potential energy with respect to the advancing delaminated area. The focus of the present analysis
is, in fact, the investigation of the e�ects of various approximations on results obtained employing
the two approaches. In particular, it will be shown that the global approach is more suitable to
obtain a su�ciently accurate approximation of the delamination growth behaviour as it requires a
low order asymptotic analysis.

As far as buckling and postbuckling modeling is concerned, an asymptotic analysis is performed
(Britvec, 1973; Thompson and Hunt, 1973). Developments are addressed to the narrow-plate and to the
axisymmetric circular-plate structural schemes which can capture the main features of the delamination
process phenomenon. Even if the analysis is carried out for homogeneous and isotropic elastic layered
plates the results can be, in principle, extended to the general case of anisotropic layers with di�erent
mechanical characteristics.

A general model of the plate is analyzed, without restrictive assumptions on the plate geometry. For
this model, global buckling of the plate can occur accompanied by a local instability of delaminated
layers. Some simpli®ed models based on restrictive hypotheses on geometry and deformation of the
plate (thick column, thin ®lm, and symmetric split models) are also analyzed by the same approach,
leading to results which may be of interest in view of practical engineering applications. Moreover, the
e�ectiveness of the general model and the coherence of the basic asymptotic expansion equations are
validated showing convergence of the general model to the thin ®lm approximation. The in¯uence on
the solution of the asymptotic expansion terms is investigated and the e�ects on energy release rate
evaluation are evidenced.

It is possible to conclude from our results that the global approach in which the energy release rate is
evaluated as a function of the total potential energy of the system is the most appropriate, because this
can capture the main nonlinearities of the behaviour. In fact, if the energy approach is used, lower order
terms need to be considered in the asymptotic expansion of load and displacement to achieve a
reasonable asymptotic approximation of the energy release rate. In contrast, in instances where the
energy release rate concept is applied involving stresses at the crack tip, the same accuracy can be
obtained only if higher order stress terms are considered in the asymptotic expansion, particularly if
there is notable sti� postbuckling behaviour of the structure. A relevant conclusion of this paper is that
an appropriate accuracy in the postbuckling modeling is required to study delamination buckling and
growth; otherwise, in many cases imprecise results may be found, possibly implying an overestimation of
the sti�ness and of the strength of the structure. For instance, neglecting of higher-order terms in the
asymptotic approximation of stresses may lead to a sti�ness and strength overestimation, especially in
the limit cases of thin ®lm and symmetric split models.

2. The initial postbuckling and delamination growth models

A typical delamination buckling behaviour of a delaminated plate is shown in Fig. 1, where a two-
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layer narrow plate scheme with an initial bonding defect of size `0 and subjected to an axial
compression N, is considered. The load-displacement equilibrium path is plotted in terms of the axial
compression N as a function of the axial relative end displacement D:

For this scheme, several instability phenomena can arise depending on the plate geometry. Short and
thick initial defects (i.e. small values of the length-to-thickness ratio of the delaminated layer) scarcely
in¯uence the buckling load of the plate and the rule is an overall instability in which the postbuckling
behaviour is characterized by a drastic reduction of sti�ness.

On the contrary, long and thin initial defects drastically reduce the buckling load of the plate. In this
case, in fact, the upper layer undergoes a state of local buckling and the delamination area may
subsequently spread. For di�erent sizes of initial defects, a narrow transition zone may exist in which a
global instability of the whole plate is accompanied with a local instability of layers.

In the general case of arbitrary initial defect and when N reaches the critical value Nc, the plate
undergoes buckling with every plate element de¯ected in the same direction, but shortly after buckling, a

Fig. 1. Delamination scheme of a plate.
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snap-through may occur and the delamination becomes fully open. Eventually, the external load N can
increase until a limit value N� is reached, at which the delamination process starts.

The delamination growth path sketched in Fig. 1 is of a general type and its characteristics depend on
various geometrical and mechanical parameters (see Chai et al., 1981). On the other hand, the actual
behaviour is more complex due to a number of causes, such as geometrical imperfections, damage of the
material, etc. For instance, in the experimental work of Kardomateas (1990) a transition from unstable
to stable behaviour was not found for the delamination growth path.

In this work, the delamination buckling and growth behaviour of an elastic plate containing an initial
defect is analyzed by using a general asymptotic approach in which the initial postbuckling results, in
the form presented by Budiansky (1974), are combined with those of elastic brittle fracture mechanics.
We therefore propose a generalization of the approach of Bruno and Grimaldi (1990), where the
analysis was restricted to the simple symmetric split scheme. In particular, as far as the initial
postbuckling analysis is concerned, the perturbation approach proposed by Budiansky is employed by
assuming the following asymptotic expansion of the generalized displacements u and of the load
multipier l

u � u0�l� � u1e� u2e2 � u3e3 � u4e4 � � � � �1�

l � lc � l1e� l2e2 � l3e3 � l4e4 � � � � , �2�
where e is a perturbation parameter, u0�l� the prebuckling fundamental displacement solution, lc the
buckling load, u1 the buckling mode, l1, l2, . . . and u2, u3, . . . are postbuckling load coe�cients and
displacement increments.

As far as the delamination condition is concerned, the Gri�th criterion is employed to model the
delamination growth process. In this context, if we consider a two-layer plate with an initial bonding
defect occupying an area A0 with outer boundary C0 (Fig. 2), the monotonic growth of delamination
from the initial outer boundary C0 to the actual C with an in®nitesimal increment DA of delaminated
area, is governed by the following equation

lim
DA40

�F� B�CC0

DA
� 0 �3�

where F �Wÿ L is the total potential energy of the system, W is the strain energy, and L the work
performed by the applied loads, while B is the energy spent in increasing the delaminated area.

If the adhesion between the layers is modelled by a surface adhesion energy parameter G, Eq. (3)
becomes G � G, where

G � ÿ lim
DA40

�F�CC0

DA
, �4�

is the energy release rate.
In the case of delamination buckling, the increment DF of the total potential energy from the

prebuckling con®guration is only involved in Eq. (3). It is assumed that this energy increment DF�u, l�
has a Taylor expansion from the prebuckling con®guration. In addition, it is assumed that DF�u, l� is a
linear function of the load parameter l

DF�u, l� � DF�u, lc� � �lÿ lc�D _F�u, lc �,
where D _F�u, lc���dDF�u, l�=dl�l�lc : Moreover, DF can be cast in the following form
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DF � 1

2

h
DFII

c � DlD _F
II

c

i
Du2 � 1

6

h
DFIII

c � DlD _F
III

c

i
Du3 � 1

24

h
DFIV

c � DlD _F
IV

c

i
Du4 � � � � �5�

where Du � uÿ u0 � u1e� u2e2 � u3e3 � � � � is the displacement increment, and Dl � lÿ lc is the load
increment from the critical state. Moreover, the prime denotes the derivative of the increment of the
total potential energy DF, evaluated at the critical con®guration, i.e. at l � lc, with respect to the
displacement variable u, with the meaning DFN�DFN�u0�lc�, lc�:

If a symmetric postbuckling occurs, as in the case of most of our example problems, using the
asymptotic expansions Eqs. (1) and (2), the energy DF can be written in an appropriate asymptotic form

DF �
�
D _F

II

c

u2
1

2
l2 � DFIV

c

u41
24

�
e4 �

�
DFVI

c

u61
720
� D _F

IV

c

u41
24

l2 � DFIV
c

u31u3
6
� D _F

II

c

u2
1

2
l4

� D _F
II

c u1u3l2 � DFII
c

u2
3

2

�
e6 � O�e8�: �6�

The delamination condition can be applied directly in the original form (3) in which the total potential
energy of the system is taken into consideration and global quantities are involved. In addition, an
alternative approach can be used in which generalized in-layer stresses at the delamination tip are
employed as a result of the application of path-independent integrals. For plane strain or generalized
plane stress problems, such as the narrow plate scheme, the energy release rate can be calculated with
the aid of the J-integral (Rice, 1968)

G � J �
�
C

�
Wdx2 ÿ Ti

@u1
@x1

ds

�
, �7�

Fig. 2. Delaminated plate: plane view.
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where C is a curve surrounding the crack tip, Ti is the traction acting on the outerside C, W is the strain
energy density and (x1, x2) is an orthogonal reference system with x1-axis coincident with the crack
direction. To avoid the e�ects of singularities in stress distribution, curve C is chosen at a suitable
distance from the crack tip.

For axisymmetric problems, analogous results have been obtained by Budiansky and Rice (1973), by
expressing the energy release rate as a function of the M-integral, in the following form

G � M

2pR2
c

, M � 2p
�
A

�
Wxini ÿ Tiui, jx j ÿ Ti

ui
2

�
r ds, i, j � r, z, �8�

where A is a torus-like surface ringing the edge of the axisymmetric delamination, r and z are cylindrical
coordinates with the z-axis being the axis of revolution and the r-axis being located in the crack plane.

3. Narrow plate model

In this section a one-dimensional model is analyzed, considering a two-layer plate of length L and
width B. At the interface between the two layers, a through-width delamination of length `0 is present,
and the plate is loaded in compression by an axial force N, as shown in Fig. 3. The unbounded part of
the plate of thickness T and length b � �Lÿ `�=2 is referred to as the base layer, the layers above and
below the delamination zone (referred to as the delaminated and substrate layer), have thickness t and
H, respectively. Several schemes are developed and analyzed by incorporating in the analysis some
inherent approximations leading to simple formulas. These are (i) the thin ®lm model �t=T40�, (ii) the
thick column model �t=T� 1�, and (iii) the symmetric split model �t=T � 0:5�:

In addition, a general model, free of restrictive assumptions for the plate geometry, is also developed
and the convergence of this model to the limit case of thin ®lm model is shown. For simplicity, the
layers are assumed to be homogeneous, isotropic and linearly elastic.

The initial postbuckling and delamination growth behaviour of the narrow plate is analyzed through
a perturbation procedure by combining results of the elastica theory (Britvec, 1973) and of brittle elastic
fracture mechanics.

Load and deformation quantities of an elastic beam member depend essentially on three independent
variables: a distortion parameter and two amplitudes (Britvec, 1973). Exact dependence is given by
means of elliptic functions, while if an approximate asymptotic expansion is used, this dependence is
established in terms of trigonometric functions.

In order to show the in¯uence of the postbuckling modeling accuracy on the prediction of the
delamination process, investigations are performed on the e�ects of energy and stress terms of the
asymptotic expansion governing delamination growth. In addition, some comparisons with exact
solutions are also given (when these are available).

For our one-dimensional problem, the delamination condition (3) can be written in the following
form

G � ÿ@DF
B@`
� G �9�

where G is the surface adhesion energy between layers, DF the increment of the total potential energy as
shown (Fig. 4), N the applied compression and uL is the corresponding axial shortening.

The energy DF can be evaluated with the aid of Eq. (5) or directly by integrating the area depicted in
Fig. 4.

As discussed in the previous section, the energy release rate G can also be calculated with the aid of
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the J-integral concept. For a one-dimensional beam model, Yin and Wang (1984) obtained an algebraic
expression for the energy release rate G in terms of bending and axial stresses at the crack tip. The
method is sketched in Fig. 5, where it is shown that stresses at the crack tip are partitioned into two
stress subsystems (a) and (b). Note that only the latter �P�,Ml,Mu� produces a singular stress ®eld.
The energy release rate can be calculated by using the J-integral

G � 1

2B

"
�P��2
Au
� �P

�� 2
Al
� �M

u�2
Du

� �M
l �2

Dl

#
, �10�

where Au, Al, Du and Dl are the bending and axial sti�ness of the upper and lower delaminated layer,
respectively.

3.1. General model

This model has also been analyzed by Chai et al. (1981), Yin et al. (1986) and Kardomateas (1993). In
the ®rst and second works the buckling and postbuckling behaviour is analyzed by modeling the plate as
composed of nonlinear beam column elements and some approximations in the kinematics are
introduced through trigonometric functions for transverse de¯ections. The energy release rate is
calculated by means of numerical di�erentiation in Chai et al. (1981), and applying the method of J-
integral (Yin et al., 1986) in a form derived by Yin and Wang (1984). In Kardomateas (1993), the
analysis is carried out by a second order perturbation analysis based on the results given by Britvec
(1973), relative to the elastica theory.

Here we extend the analysis performed by Kardomateas (1993), using a re®ned asymptotic expansion.
A perturbation procedure to construct the relevant governing equations of the model is developed. In
the following, the subscript i = d, s, b refers to the delaminated, substrate and base layer, respectively.
The analysis is presented both for simply supported and clamped boundary conditions.

Every layer of the plate is considered as a compressive elastic member, restrained by means of
concentrated forces and moments. The asymptotic expansion of the load and deformation quantities in
terms of the distortion parameter of the delaminated layer, is performed and the postbuckling solution
is analyzed through the compatibility and equilibrium conditions at the common section.

Fig. 4. Total potential energy increment.
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3.1.1. Delaminated layer
The delaminated layer is treated as a part of an elastica. The buckled con®guration, due to its

symmetry with respect to the midsection of the plate (Fig. 6), is de®ned by the end amplitude Fd and
distortion parameter e: For symmetric elements, in fact, the relation Fi � ÿFj holds true and the end
rotation is obtained by expanding the exact expression in Taylor series about the critical state in terms
of the distortion parameter e: This represents the tangent rotation at the in¯ection point from the
straight position, positive if clockwise

Fig. 6. Buckled con®guration of the elastica curves representing the constitutive elements of the delaminated plate (symmetric

part): (a) simply supported plate and (b) clamped plate.
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yd � sin�Fd�eÿ 1

24

ÿ
sin�Fd � cos 2�Fd �

�
e3 � O�e5�: �11�

At the critical state, the end amplitude Fd can be expanded in the form

Fd � F0
d � F�1�d e� F�2�d e2 � F�3�d e3 � O�e4�; �12�

therefore, the tangent rotation becomes:

yd �
ÿ
sin F0

d

�
e� ÿcos F0

d

�
F�1�d e2 �

�
cos F0

dF
�2�
d ÿ sin F0

d

F�1�2d

2
ÿ 1

24
sin F0

d cos2 F0
d

�
e3 �

�
cos F0

dF
�3�
d

ÿ sin F0
dF
�1�
d F�2�d ÿ

1

24

�
F�1�d cos3 F0

d ÿ 2F�1�d cos F0
d sin 2 F0

d

�
ÿ F�1�3d cos F0

d

6

�
e4 � O�e5�,

or in compact form

yd � y�1�d e� y�2�d e2 � y�3�d e3 � y�4�d e4 � O�e5 �: �13�
In a similar way, we proceed for the end moment Md, the axial force Nd and the ¯exural contraction fd

Md �M
�1�
d e�M

�2�
d e2 �M

�3�
d e3 �M

�4�
d e4 � O�e5 �, �14�

Nd � N0
d �N

�1�
d e�N

�2�
d e2 �N

�3�
d e3 � O�e4�, �15�

fd � f
�2�
d e2 � f

�3�
d e3 � f

�4�
d e4 � O�e5�: �16�

3.1.2. Substrate layer
The end amplitude Fs and the distortion parameter as are now expanded with respect to the

distortion parameter of the delaminated layer e

Fs � F0
s � F�1�s e� F�2�s e2 � F�3�s e3 � O�e4�, �17�

as � a�1�s e� a�2�s e2 � a�3�s e3 � a�4�s e4 � O�e5 �: �18�
The end rotation ys, the end moment Ms, the axial force Ns and the ¯exural fs can be found once more
by expanding the relevant expressions (Britvec, 1973)

ys � y�1�s e� y�2�s e2 � y�3�s e3 � y�4�s e4 � O�e5 � �19�

Ms �M�1�s e�M�2�s e2 �M�3�s e3 �M�4�s e4 � O�e5 �, �20�

Ns � N0
s �N �1�s e�N �2�s e2 �N �3�s e3 � O�e4�, �21�

fs � f �2�s e2 � f �3�s e3 � f �4�s e4 � O�e5�: �22�
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3.1.3. Base layer
The load and deformation quantities for the base layer are in¯uenced by the external boundary

conditions, thus the amplitude at the simply supported end is ÿp=2 while at the clamped end is ÿp: The
amplitude at the common section and the distortion parameter of the base layer are

Fb � F0
b � F�1�b e� F�2�b e2 � F�3�b e3 � O�e4�, �23�

ab � a�1�b e� a�2�b e2 � a�3�b e3 � a�4�b e4 � O�e5 �: �24�
The asymptotic expressions for load and deformation quantities are

yb � y�1�b e� y�2�b e2 � y�3�b e3 � y�4�b e4 � O�e5 �, �25�

Mb �M
�1�
b e�M

�2�
b e2 �M

�3�
b e3 �M

�4�
b e4 � O�e5 �, �26�

N � N0 �N �1�e�N �2�e2 �N �3�e3 � O�e4�, �27�

fb � f
�2�
b e2 � f

�3�
b e3 � f

�4�
b e4 � O�e5�: �28�

The nonlinear postbuckling path is de®ned by equilibrium and compatibility requirements at the
common section.

3.1.4. Equilibrium equations
The force and moment equilibrium are

Nd �Ns ÿN � 0, �29�

Md �Ms �Mb ÿNd
H

2
cos y�Ns

t

2
cos y � 0; �30�

where: cos y � 1ÿ y�1�2 e
2

2 ÿ y�1�y�2�e3:

3.1.5. Compatibility equations
The continuity condition for the rotation at the common section requires

yd � ys � yb: �31�
Moreover, axial shortening, due to both axial and ¯exural deformations, for the delaminated and
substrate layer must be compatible�

fd � Nd`�1ÿ u2 �
EBt

�
ÿ
�
fs � Ns`�1ÿ u2 �

EBH

�
� sin y � �H� t� � 0; �32�

where:

sin y � sin F0
de� F�1�d cos F0

de
2 �

�
F�2�d cos F0

d ÿ
F�1�2d sin F0

d

2
ÿ cos 2F0

d sin F0
d

24
ÿ sin3 F0

d

6

�
e3 � � � � :
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The ®rst order equilibrium and compatibility conditions de®ne the critical state. The second, third and
fourth order equations provide the corresponding ®rst, second and third order forces.

3.1.6. Displacement parameters
The expression for the applied compressive displacement is

u �
�
fd � Nd`�1ÿ n2�

EBt

�
�
�
2fb � 2Nb�1ÿ n2�

EBT

�
� sin yT � N0L�1ÿ n2�

EBT
� �

2N �1�b�1ÿ n2�
EBT

� N
�1�
d `�1ÿ n2�

EBt
�Hy�1��e�

�
f
�2�
d �

N
�2�
d `�1ÿ n2�

EBt
� 2f

�2�
b �

2N �2�b�1ÿ n2�
EBT

�Hy�2�
�
e2 � � � � :

�33�

The midpoint de¯ection of the delaminated layer is given by

wdm � w
�1�
dme� w

�2�
dme

2; �34�
where

w
�1�
dm �

`

2F0
d

ÿ
1ÿ cos F0

d

�
, w

�2�
dm �

`

2F0
d

 
cos F0

d ÿ 1

F0
d

� sin F0
d

!
F�1�d ; �35�

and that of the substrate layer

wsm � w�1�sme� w�2�sme
2, �36�

w�1�sm �
`

2F0
s

ÿ
1ÿ cos F0

s

�
a�1�s , �37�

w�2�sm �
`

2F0
s

 
cos F0

s ÿ 1

F0
s

� sin F0
s

!
F�1�s a�1�s �

`

2F0
s

ÿ
1ÿ cos F0

s

�
a�2�s : �38�

The representation of the assembled elastica curves for both the simply supported (case a) and the
clamped boundary (case b) restraint conditions are shown in Fig. 6.

From the analysis developed in the previous section, it follows that the buckling mode is de®ned by a
critical end-amplitude p=2 < F0

d < p for the delaminated layer, which therefore shows a symmetric
in¯ection point, while for the substrate layer we have ÿp=2 < F0

s < 0, with no in¯ection point and for
the base layer ÿp=2 < F0

b < 0 and ÿp < F0
b < 0 referred to as the simply supported and clamped

conditions, respectively.
From our results the following considerations emerge. The buckling and postbuckling behaviour

largely depends on the relative thickness and length of the delaminated layer, de®ned by the ratios �t �
t=T and �̀ � `=L: Introducing the dimensionless parameter of the relative slenderness of the delaminated
layer with respect to the perfect plate, as

s � `T

tL
, �39�

we can distinguish between two very di�erent behaviours in the two cases of short and long
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delaminations. These can be approximately de®ned by s < 2 and s > 2 for the simply supported
condition, or s < 1 and s > 1 for the clamped condition (see also Yin et al., 1986).

For short delaminations the buckling load changes slightly from that of the whole perfect plate. In
fact, the loss in sti�ness is small and, assuming t=T < 0:5, the initial amplitude of the delaminated layer
is greater than that of the substrate, with an upward de¯ection of the plate. In the postbuckling range,
the compressive load in the delaminated layer decreases while increases in the substrate, until the
delamination becomes completely closed with a consequent contact between layers. This contact
condition is expressed in terms of midpoint displacements by

wd � T

2
cos yd � ws � T

2
, �40�

or, in an asymptotic form

w
�1�
d e� w

�2�
d e2 ÿ

�
w�1�s e� w�1�s e2 � T

4
y�1�2e2

�
� 0: �41�

This phase can occur in the postbuckling range of the plate, which is unstable when the axial load goes
beyond a maximum value (Figs. 7 and 8). In fact, the load reaches its maximum value near the critical
point and then decreases as a consequence of the large negative value of the second order term N (2) of
the load asymptotic expansion. The typical load-displacement curves are shown in Figs. 7(a) and (b) and
8(a) and (b).

For long delaminations, the critical load of the plate is drastically reduced due to the slenderness of
the delaminated layer. In this case the plate buckles with a deformation mode similar to that found for
short delaminations (Fig. 9(a) and (b)1). But, with a small increase in the load, the deformation shape
may jump to a new con®guration (Fig. 9(a)±(b)2), at which the delamination zone is fully open and may
grow.

It is evident that long delaminations determine a drastic reduction of the buckling load, but the
sti�ness of the plate shows only a slight decrement and the maximum load-carrying capacity is not
reached.

Moreover, as we can see from Figs. 7 and 8, short delaminations cause a global buckling with a value

Fig. 7. Load-displacement curves for short delaminations (N: applied load; Ncperf: critical load of the perfect plate; u: axial shorten-

ing). (a) Simply supported plate: s = 1.43, 1.67, (b) clamped plate: s = 0.833, 0.625.
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of critical load scarcely in¯uenced by the presence of the interlaminar defect, while buckling is local and
the boundary conditions scarcely a�ect the critical load for long delaminations.

The in¯uence of the geometrical parameters on the buckling load is shown in Fig. 10. It can be
observed that the transition value between short and long delaminations occurs approximatively at s � 2
or s � 1 for simply supported and clamped boundary conditions, respectively.

Denoting by �̀� � `�=L, the normalized in¯ection length of the undamaged plate, the transition
condition can be expressed in the form

s � 2 � �̀� �42�

for both simply supported and clamped conditions.
Similar conclusions have been obtained by Yin (1985) and Larsson (1991) by using di�erent

approaches. Moreover, some experimental results on the postbuckling behaviour of delaminated plates
are given by Kardomateas (1990). These results can refer to long delaminations �s > 1 clamped plate)
and consequently they agree with our predictions.

3.1.7. The energy release rate
The energy release rate is here calculated both through the increment of the total potential energy and

by the J-integral. However, it must be observed that for the general model the relevant buckling
governing equations does not admit a closed-form solution. Therefore, it is not possible to give an
algebraic development for DF Hence, it is calculated by means of standard numerical di�erentiation,
while J-integral is applied by utilizing both second and third order postbuckling results. Let us consider
the second order approximation in terms of the perturbation parameter e of the parametric load±
displacement relation

N � N0 �N �1�e�N �2�e2 � � � � , �43�

u � u0 � u�1�e� u�2�e2 � � � � : �44�

When e is expressed as a function of u by solving the second order equation (44) and taking the positive
root,

Fig. 9. (a) Deformation modes in the postbuckling range (supported end restraints). (b) Deformation modes in the postbuckling

range (clamped end restraints).
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e � ÿu
�1� �

����������������������������������������
u�1�2 � 4u�2��uÿ u0�

p
2u�2�

�45�

we obtain the explicit second order approximation of the load±displacement relation.
The total potential energy increment is

DF � ÿ
�N
N 0

u dN� 1

2

�
u0 � u0

N0
N

�
�NÿN0�; �46�

where u0 and N 0 represent the displacement and load at the critical state. A standard integration yields

DF � ÿN
2u�2�

2N �2�
�
ÿ
N �1�2 � 4N �N �2� ÿ 4N0N �2�

�3
2
ÿ
ÿN �2�u�1� �N �1�u�2�

�
12N �2�3

ÿ N
ÿ
2N �2�2u0 ÿN �1�N �2�u�1� �N �1�2u�2� ÿ 2N0N �2�u�2�

�
2N �2�2

� 12N 0N �2�3u0 �N �1�3N �2�u�1� ÿ 6N0N �1�N �2�2u�1� ÿN �1�4u�2� � 6N0N �1�2N �2�u�2� ÿ 6N02N �2�2u�2�

12N �2�3

� 1

2

�
u0 � u0

N0
N

�
�NÿN 0�:

�47�
The energy release rate can thus be calculated with the aid of Eq. (4) by evaluating DF and DA � BD`
between two in®nitesimally close equilibrium states. Using the J-integral calculation, we obtain

P� � t

T

�
N �1� � 6H

T 2
M
�1�
b

�
e� t

T

�
N �2� � 6H

T 2
M
�2�
b

�
e2 � t

T

�
N �3� � 6H

T 2
M
�3�
b

�
e3 � O�e4�

� P��1�e� P��2�e2 � P��3�e3 � O�e4�,

Mu �
�
ÿM

�1�
d ÿM

�1�
b

t3

T 3

�
e�

�
ÿM

�2�
d ÿM

�2�
b
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�
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�
ÿM

�3�
d ÿM

�3�
b

t3

T 3

�
e3 � O�e4 �

�Mu�1�e�Mu�2�e2 �Mu�3�e3 � O�e4�,

Ml �
�
ÿM�1�s ÿM

�1�
b

t3

T 3

�
e�

�
ÿM�2�s ÿM

�2�
b

t3

T 3

�
e2 �

�
ÿM�3�s ÿM

�3�
b

t3

T 3

�
e3 � O�e4�

�Ml�1�e�Ml�2�e2 �Ml�3�e3 � O�e4�, �48�

therefore, the energy release rate G can be expressed by

G � J � 1

2B

"
T�1ÿ n2�
EBtH

P�2 � Mu2

Dd

� Ml2

Ds

#
: �49�

On the other hand, in the context of an asymptotic formulation, we obtain the following expression
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G � J � J �2�e2 � J �3�e3 � J �4�e4 � O�e5 �, �50�

where

J �2� � 1

2B

"
T�1ÿ n2�
EBtH

P��1�2 � Mu�1�2

Dd

� Ml�1�2

Ds

#
, �51�

J �3� � 1

2B

"
T�1ÿ n2�
EBtH

2P��1�P��2� � 2Mu�1�Mu�2�

Dd

� 2Ml�1�Ml�2�

Ds

#
, �52�

J �4� � 1

2B
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T�1ÿ n2�
EBtH
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P��2�2 � 2P��1�P��3�

�
�
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Mu�2�2 � 2Mu�1�Mu�3�
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�
ÿ
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�
Ds

#
:

�53�

It follows from our numerical investigation that the results corresponding to Eq. (49) involving second
order stress terms are very similar to those obtained employing the fourth order equation (50).

Fig. 10. Buckling load as a function of the delamination length for various t=T ratios.
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It should be noted that if the asymptotic expansions (48) are performed up to the second order terms,
the energy release rate (50) must be coherently taken up to the third order term. In this way, the
complete e�ects of second order stress terms is not considered and third order stress terms are also not
incorporated in the energy release rate evaluation which, when a local stress criterion is employed, must
be founded on a more accurate asymptotic expansion. This determines imprecise results as shown in
Figs. 11 and 12, where the dashed curves represent the results based on the third order approximation
of G. In particular, it can be observed that these approximations, give very imprecise results for low
values of the t=T parameter. This because third order term J (3) approaches zero as t=T40 �P��1�, Mu�2�,
Ml�2�40� and the e�ect of second order terms on G are completely neglected.

In the following ®gures short delaminations have not been considered, because the ultimate axial load
capacity is dominated by the initial postbuckling behaviour and not by the delamination growth. The
non-dimensional axial load N=Nc �Nc being the critical load) is reported in Figs. 11 and 12, versus the
dimensionless transverse central de¯ection w=L, for two values of the adimensionalized energy release
rate �G0 � ` 20BG=Ddp4 (selected to embrace the range of variation in actual laminates, i.e. 140±1400 N/
m).

3.2. Thin ®lm±thick column and symmetric split models

Results relative to the simpli®ed schemes of thin ®lm, thick column and symmetric split models are
now presented by introducing assumptions on the plate deformation. More precisely, a plate with
thickness parameters t and T is considered such that transverse de¯ections of the upper delaminated
layer only occur (Fig. 3).

In this case, the asymptotic expressions of load, displacements and stresses can be obtained by using
the results of the elastica for the buckled layer. The parametric form of the force±displacement relation,
by enforcing compatibility of axial displacements and equilibrium condition, is

N � Nc �N2e2 �N4e4 � O�e6�, �54�

uL � u0 � u2e2 � u4e4 � O�e6�, �55�
while the bending moment at the delamination end is

M�1� �M1e�M3e3 � O�e5�, �56�
where

u0 � NL�1ÿ n2�
EBT

, Nc � N �1�c

T

t
, N �1�c �

p2EBt3

3`2�1ÿ n2� , M1 � EBt3p
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�1�
2
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t
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�1�
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�1�
2 �

1

8
N �1�c , u

�1�
2 �

`

4
, u2 � t

T
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�1�
2 ,

N4 � N
�1�
4

T

t
� EB�Tÿ t�
`�1ÿ n2� u

�1�
4 , N

�1�
4 �

17

1536
N �1�c , u

�1�
4 � ÿ

5`

384
, u4 � t

T
u
�1�
4 ,

in which the superscript (1) denotes the upper layer. In addition, the central transverse de¯ection w of
the delaminated layer is:
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Fig. 11. (a) N±w delamination curves for s � 3, (b) N±w delamination curves for s � 3:
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Fig. 12. (a) N±w delamination curves for s � 4 (b) N±w delamination curves for s � 4:
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w � e`
p
ÿ 5

48p
e3 � O�e5 �:

In this case the delamination condition (9) can be applied by evaluating the increment of the total
potential energy DF with the help of Eq. (6) or, alternatively, by integrating the dashed area of Fig. 4.

If we take the asymptotic expansions (54) and (55) up to O�e2� terms, the following expression for the
energy release rate is found

G � N �1�c

4B

(
2e2 �

"
3

16
� 3

8p2

�
`

t

�2
Tÿ t

T

#
e4

)
: �57�

The same expression of G can also be obtained by considering Eq. (6) up to O�e4�:
However, if terms up to O�e4� are taken into account, we obtain

G � N �1�c

4B

(
2e2 �

"
1

12
� 3

8p2

�
`

t

�2
Tÿ t

T

#
e4 � O�e6�

)
, �58�

and the same expression of G is again obtained taking into account terms up to O�e6� in Eq. (6).
If the J-integral concept is now applied, only the stress resultant terms shown in Fig. 13 are

considered, under the condition that the sublaminate exhibits small curvature in comparison with the
delaminated layer. These stresses are

P� � t

T
NÿN �1� � P�2e

2 � P�4e
4 � O�e6� � t

T

EB�Tÿ t�
`�1ÿ n2� u

�1�
2 e2 � t

T

EB�Tÿ t�
`�1ÿ n2� u

�1�
4 e4 � O�e6 �,

Mu �M�1� �Mu
1e�Mu

3e
3 � O�e5� � EBt3

12�1ÿ n2�`
�
2pe� p

24
e3 � O�e5�

�
: �59�

Let us examine the in¯uence of the various terms in the asymptotic expansion of P� and Mu in detail. If
terms up to O�e2� in Eqs. (59) are taken into account, we obtain

G � J � 1ÿ n2

2BE

�
T

BtH
�P��2� 12

Bt3
�Mu�2

�
� N �1�c

4B

(
2e2 �

"
3

8p2

�
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t

�2
Tÿ t

T

#
e4

)
: �60�

This expression is di�erent from the corresponding Eq. (57) because the contribution of the third order
stress term M3 is completely neglected. If this contribution is accounted for (i.e. the asymptotic
expansion is fully introduced in Eq. (10)), the following expression for the energy release rate is found

Fig. 13. Stresses at the crack tip.
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G � J � N �1�c
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, �61�

which coincides with Eq. (58). The agreement between Eqs. (58) and (61) is due to the coherence of the
asymptotic expansions employed.

In essence, the result expressed by Eq. (60) has been obtained by Chai et al. (1981). This result,
although it does not account for the third order bending term, is su�ciently accurate to model the
mechanical behaviour of the narrow-plate example. This is due to the ¯at postbuckling equilibrium path
of the structure.

For this simpli®ed model we give the exact solution which is compared with the asymptotic analysis
results. Using the results of elastica, hence the exact dependence through elliptic functions of load and
deformation parameters in terms of the distortion parameter e of the clamped delaminated layer, and
applying compatibility and equilibrium requirements we obtain

N � N �1�
T

t
� EB�Tÿ t�
�1ÿ n2�

�
1ÿ 2E�p, k� ÿ F�p, k�

F�p, k�
�
, �62�
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T
, �63�

where
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:

Therefore, we can write
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The in¯uence of the thickness/length ratio t=`0 and the adhesion energy parameter �G0 � B`2G=Dup2,
whereDu � EBt3=12�1ÿ n2�, on the delamination growth path is shown in Figs. 14 and 15. The relative
shortening uL=L and the relative de¯ection w=L are driven until the complete delamination of layers is
reached. For the adhesion energy parameter �G0 � B`2G=Dup2, two values have been considered
(representative of the interlaminar toughness of the actual laminates: 140±1400 N/m). For a ®xed value
of the critical energy release rate, utilizing the delamination condition leads to a relation between the
distortion parameter e and the current delamination length, and thus to the delamination growth path.

It can be concluded from Figs. 14 and 15 that the thick column model shows a complex behaviour. In
fact, it exhibits a stable behaviour only for relative high values of the thickness±length ratio and of the
adhesion energy parameter, while an unstable behaviour can be found for low values of these
parameters. Moreover, it can be stated from numerical experiments that the various approximations
introduced in the asymptotic analysis (Eqs. (57), (58), and (60)) give negligible di�erences with respect to
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the exact solution. Hence, in Figs. 14 and 15 only numerical results relative to Eq. (57), i.e. the energy
approach, (which also represents the best approximation of the problem) are shown.

As far as the limit case of the symmetric split model is concerned, it can be shown that the relevant
governing equations can be obtained from those of the thick column model taking t=T � 1 in the
relative equations.

On the other hand, the limit case of thin ®lm model can be obtained from the thick column model in
the limit t=T40:

In order to investigate the in¯uence of the various approximations introduced in the analyses of the
symmetric split model, plots of the delamination growth path are shown in Fig. 16. Even in this case
two values of the adhesion energy parameter �G0 � B`2G=Dup2 have been chosen to represent the
interlaminar toughness of the current laminates.

Fig. 16 shows that the introduced approximations lead to a practically coincident path, in fact the
load at the onset of delamination is very near to the critical value. The di�erence is just appreciable
when a decrease in the thickness-length ratio increases the delamination growth load. In this case only
the delamination condition is in¯uenced by a more advanced postbuckling phase. Furthermore, the best
approximation to the exact solution in terms of delamination growth path seems to be the total
potential increment variation with a second order analysis (Bruno, 1988).

We can conclude that for the symmetric split and thick column problems the re®nements introduced
in the analytical developments do not practically improve the solution. This is related to the ¯at

Fig. 14. Thick column model: in¯uence of �G0 for t=T � 0:1:
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postbuckling behaviour of the buckled layer. On the contrary, we will see for other examples
characterized by a very sti� postbuckling (for instance the two-dimensional circular plate) that the
solution is strongly a�ected by the above-discussed approximations.

3.2.1. Convergence of the general model to the thin ®lm model
Numerical results show the convergence of the general model to the simpli®ed thick-column model,

when t=T40: A delaminated plate with a ®xed value `0=L � 0:5 of the initial defect ratio is considered
and it is also assumed that the slenderness parameter s goes from 2.5 to 10.

The behaviour of the plate model is examined by evaluating the di�erences eG � �Ggen ÿ Gthick�=Ggen,
between the energy release rate Ggen of the general model and Gthick of the thick-column model. These
results are shown in Fig. 17, where the relative quantity eG is plotted versus the thickness parameter
t=T:

It can be observed that the general model and the thick column model tend to coincide for a
decreasing ratio t=T, and that the general model is less sti� than the other. Moreover, in the case of
clamped plate, the agreement is more satisfactory than in the simply supported case for lower t=T ratios.
As a matter of fact, the same behaviour of long delaminations in the case of clamped boundary
condition is found for lower slenderness with respect to the simply supported case.

Moreover, it becomes evident from Fig. 17 that the general model predicts a much higher energy
release rate than the thick column model. In the case of simply supported plate the thick column
approximation can be applied only in an initial stage of postbuckling.

Fig. 15. Thick column model: in¯uence of t=`0 for t=T � 0:1:
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Delamination growth curves are compared in Fig. 18, and it is clear that when the relative slenderness
parameters become larger, the general model tends towards the simpli®ed one.

As far as the general plate model is concerned, we can conclude that the delaminated plate can exhibit
essentially two behaviours:

. for thick and short delaminations �s < 2 �̀��, buckling is global at a load close to the critical load of
the perfect plate with possibility of crack closure,

. for long and thin delaminations �s > 2 �̀��, buckling is local (i.e. only the delaminated layer
buckles) and the critical load of the whole plate is drastically reduced.

While in the former case the plates follows an unstable elastic postbuckling behaviour, in the latter the
maximum axial load carrying capacity is dominated by the delamination growth.

Moreover, it appears from our results that the simpli®ed models can be appropriately used to model
the behaviour of plates containing long delaminations. On the contrary, for short delaminations the
simpli®ed models based on a local buckling hypothesis do not capture the actual behaviour of the plate.
This is because a global buckling occurs and thus a strong in¯uence of the boundary conditions is
found.

When a Gri�th criterion is adopted, the delamination growth is generally catastrophic, except for
long delaminations. Moreover, the clamped boundary condition shows greater stability in the
delamination growth.

Fig. 16. Symmetric split model: in¯uence of �G0 on delamination growth paths.
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4. Circular plate model

A circular two-layers plate with radius �R debonded over a penny-shaped region of radius R is now
considered (Fig. 19). For this structural model, a closed form solution may be hard to obtain, at least in
the general case in which a global buckling of the plate occurs. Therefore, we analyze here only the
symmetric split, thick column and thin ®lm simpli®ed models.

The postbuckling behaviour of the circular plate is modelled employing the von KaÁ rmaÁ n plate theory
in the form given by Thompson and Hunt (1973).

It will be shown that for this structure the accuracy in the evaluation of the asymptotic terms
involved in the energy release rate calculation and in the postbuckling stress and deformation
parameters, are of great importance.

The governing equations of the thick column model are determined in a way similar to that employed
in the previous section. Finally, the symmetric split and thin ®lm model approximations are obtained
from the thick column model by setting t=T � 1 and t=T40, respectively.

From Thompson and Hunt (1973) the axial stress N
�1�
R and the inward axial displacement uR for the

Fig. 17. Relative di�erence eG � �Ggen ÿ Gthick�=Ggen, for the energy release rate. Di�erent values of the parameter NL 2=Db are con-

sidered.
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upper buckled layer at the boundary of radius R can be written as

N
�1�
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�1�
R2x

2, �65�

uR � N
�1�
R
�1ÿ u�
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R� u
�1�
2Rx

2, �66�
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N
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�2 t2, g �
����������
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�1�
RC

D

s
� 3:832

R
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In Eqs.(65)±(68) we denote by D � Et3=12�1ÿ n2� the bending sti�ness of the delaminated layer, t being
the thickness, E and n the modulus of elasticity and the Poisson's ratio, respectively, and J0 the zeroth-
order Bessel function of the ®rst kind. The dimensionless displacement parameter x is

Fig. 18. Comparison in the N±w delamination growth paths for s � 10 and di�erent models: (a) simply supported plate and (b)

clamped plate.
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x � w

t
,

where w is the central transverse de¯ection of the upper layer.
The axial force N

�2�
R acting on the lower layer is written as

N
�2�
R �

E�Tÿ t�
R�1ÿ u�uR: �69�

The total axial force NR � N
�1�
R �N

�2�
R at the boundary of radius R, utilizing Eqs. (65) and (66) becomes

NR � NRC �NR2x
2, �70�

where

NRC � N
�1�
RC

T

t
, NR2 �

�
0:2049NRC � u

�1�
2R

E�Tÿ t�
R�1ÿ u�

�
, �71�

while the axial displacement at the boundary of radius R, is

uR � NR�1ÿ u�
ET

R� t

T
u
�1�
2Rx

2: �72�

Now, the annular plate with inner radius R and outer radius �R is analyzed. The axial displacement can
be related to the external compression N through the following expression

Fig. 19. Circular plate scheme.

D. Bruno, F. Greco / International Journal of Solids and Structures 37 (2000) 6239±6276 6267



u�r� � 1

ET

266641� u
r

R2�NÿNR�
1ÿ R2

�R
2

ÿ
NR

R2

�R
2
ÿN

1ÿ R2

�R
2

�1ÿ u�r

37775, with RRrR �R: �73�

From Eqs. (70)±(73) we obtain

N � Nc �N2x
2, �74�

where

Nc � NRC, �75�

N2 � NRC

240:2049� 3J 2
0 �gR��

J0�gR� ÿ 1
�2�1ÿ t

T

�
�1� u� � 0:4087�1ÿ u2�

�
 
1ÿ R2

�R
2

!
t

T

J 2
0 �gR�

4
�
J0�gR� ÿ 1

�2 �gR� 2
35, �76�

and for the in-plane outer boundary displacement u ÅR

u ÅR �
N�1ÿ u�

ET
�R� t2

�R
2

J 2
0 �gR�

4
�
J0�gR� ÿ 1

�2 �gR�2 tTx2: �77�

Gri�th's criterion for the uniform expansion of the delamination takes the form

2pRG � ÿ@DF
@R

, �78�

where the fourth order approximation of the total potential energy in terms of the applied load via a
second order analysis (i.e. Eqs. (74) and (77) or Eq. (6) up to the fourth order terms) is

DF � ÿ1
2
2p �R
�NÿNc �2

N2

�R

�
t

�R

�2 J 2
0 �gR�

4
�
J0�gR� ÿ 1

�2 �gR� 2 tT : �79�

Using Eq. (78) and the numerical value of the Bessel function J0�gR�, the delamination condition is
expressed in the form

1:21x2 � 0:605

�
0:2049� 0:1236�1ÿ u2� t

T
� 0:2473�1� u�

�
1ÿ t

T

��
x4 � 2b0

�
R

�R

�4

, �80�

where

b0 �
G �R

2

�sct3
, �sc � 14:68

D

�R
2
t
:

Under the assumption of the thin ®lm model �t=T40), the external compression and the axial edge
displacements become
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N � NRC �N2x
2, u �R �

N�1ÿ u�
ET

�R �81�

where

N2 � NRC

"
0:2049� 3J 2

0 �gR��
J0�gR� ÿ 1

�2 �1� u�
#
: �82�

Finally, the delamination condition can be written as

1:21x2 � 0:605
�
0:2049� 0:2473�1� u��x4 � 2b0

�
R

�R

�4

: �83�

The delamination growth is analyzed by applying the path independent integral concept. In particular,
the M-integral is employed in the form of Eq. (8) over a revolution surface bounded by the hatched
curve in Fig. 20 (see Yin, 1985) and superposing on the postbuckling solution the following biaxial
stress ®eld

sx � sy � ÿNR

T
, �84�

in the region surrounding the edge of delamination that, due to its continuity, does not a�ect the stress
intensity factors. The energy release rate is thus produced only by the bending moment M� acting at the
tip of the delaminated layer and the axial force P� de®ned by

P� � N
�1�
R ÿNR

t

T
, M� �M

�1�
R , �85�

and sketched in Fig. 20.
The energy release rate with the application of the M-integral is

G � �1ÿ u2�
2E

�
TP�2

t�Tÿ t� � 12
M�2

t3

�
, �86�

which, in the limit t=T40, can be written as

G � �1ÿ u2�
2E

�
P�2

t
� 12

M�2

t3

�
: �87�

The bending moment at the edge of the delamination can be expressed in the following asymptotic form

M� �M�1x�M�3x
3 � O

ÿ
x3
�
: �88�

The ®rst order term M�1 is often assumed to be the main contribution in the delamination condition.
But, as it is shown in the following, the third order term M�3, although negligible in the case of narrow-
plate scheme, dominates the delamination growth behaviour in plate models exhibiting high sti�
postbuckling, as for the present case.

The ®rst order term M�1 is given by (Thompson and Hunt, 1973)

M�1 � D

�
�w1 � u

r
_w1

�
t � g2DJ0�gR�t

J0�gR� ÿ 1
; �89�
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while, to obtain the third order term M�3, consideration of the third order equation for the transverse
de¯ection is needed. This is a Bessel type equation which, while expanded, gives

w 0003 �
w 003
r
ÿ w 03

r2
� 12�1ÿ u2�Pc

Et3
w 03 �

12

t2

�
v 02 �

w 0 21
2
� u

v2
r

�
w 01 ÿ

12�1ÿ u2�P �2�
2Et3

w 01, �90�

with the following boundary conditions

w3�0� � 0, w 03�0� � 0, �91�

w3�R� � 0, w 03�R� � 0, �92�

where a prime denotes di�erentiation with respect to the abscissa r, and the second order load coe�cient
is P �2� � 6:017D=R2t2: The linear di�erential equilibrium Eq. (90) does not admit a closed-form solution
and therefore must be numerically solved.

The numerical procedure to be employed has to be suitably chosen to avoid the e�ects of singularities
arising from the second particular solution of the Bessel type equation. To this purpose, an e�cient
numerical procedure is represented by a collocation type method, which automatically overcomes the
singularity e�ects when a polynomial-like basis is assumed.

Thus, the solution can be approximated by ®nding a linear combination of linearly independent
polynomial functions r j in the form

w3�r� �
XN
j�0

cjr
j: �93�

Finally, we can give the following numerical approximation of the term M�3

M�3 � D

�
�w3 � u

r
_w3

�
t3 � Dt3

XN
j�2

j�jÿ 1�cjr jÿ2: �94�

A comparison between the bending moment calculated including in Eq. (88) the terms up to the ®rst
and third order and the exact solution given by Yin (1985) is presented in Figs. 21 and 22. Comparisons
are presented for the dimensionless bending moment MR2=Dt versus the dimensionless axial applied
load N=Nc (Fig. 21) and the axial shortening u=uc (Fig. 22). The strong importance of the third order
term M�3 emerges from the results.

Now we discuss the in¯uence of the terms in the asymptotic expansion of P� and M�. In fact, these
quantities can be arranged in the following form:

Fig. 20. Equivalent loading system for the calculation of the energy release rate.
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8>><>>:
P� � ÿ Etu

�1�
2R

R�1ÿ u�x
2 � P�2x

2 � O
ÿ
x4
�

M� �M�1x�M�3x
3 � O

ÿ
x5
� : �95�

If terms up to O�x2� are considered, i.e. the term M�3 is neglected, the energy release rate becomes

G � �1ÿ u2�
2E

�
P�22
t

x4 � 12
M�21
t3

x2

�
: �96�

On the other hand, it is evident that if Eq. (96) is considered as an asymptotic expansion of G,the fourth
order term is incomplete because it does not contain the contribution of the product M�1 M

�
3 � O�x4�:

Thus, to obtain a correct fourth order expression for G we have to deal with a third order perturbation
analysis, i.e. including M�3: This leads to

G � �1ÿ u2�
2E

�
12

M��1�2

t3
x2 �

�
P��2�2

t
� 24

M��1�M��3�

t3

�
x4 � O

ÿ
x4
��
: �97�

Comparisons between the delamination growth paths obtained through Eqs. (83), (96), (97) and the
exact numerical solution (Yin, 1985) are presented in Figs. 23 and 24. It can be noted that, unlike the
narrow plate model, the circular plate behaviour is always found to be unstable for all values of the t=T
ratio if Eq. (97) is employed. The same behaviour is found through the exact solution and the energy
approach (Eq. (83)). On the contrary, if the incomplete fourth order equation (96) is used, an erroneous
stable behaviour of the plate is obtained during the delamination growth for increasing values of the
adhesion energy parameter. Thus, the behaviour of the circular plate is found to be sensitive to the
bending terms neglected in the fourth order asymptotic coe�cient and it becomes therefore necessary to
deal at least with a third order analysis.

This can be attributed to the remarkable sti�ness of the circular plate during postbuckling.
Considerations similar to those developed for the thin ®lm model can also be reported for the

symmetric split model. More precisely, if the M�3 term is neglected, the following expression of the

Fig. 21. Bending moment in the postbuckling of a circular plate. Convergence of the perturbation method in terms of the applied

load N=Nc:
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Fig. 22. Bending moment in the postbuckling of a circular plate. Convergence of the perturbation method in terms of the axial

shortening u=uc:

Fig. 23. Delamination behaviour of a circular thin ®lm model. Applied compression N=Nc versus central de¯ection w=t for constant
values of b0�t=T � 0:01�:
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energy release rate is found

G � M�2

D
� 1

D

h
M�21 x2 � O

ÿ
x4
�i
, �98�

which is the same reported in Bottega and Maewal (1983). On the other hand, a re®ned expression of G
can be found by accounting for the contribution of the M�3 term

G � 1

D

h
M�21 x2 � 2M�1M

�
3x

4 � O
ÿ
x6
�i
: �99�

The behaviour of the models corresponding to Eqs. (80) (with t=T � 1), (98) and (99) is shown in
Fig. 25, where a comparison with the exact numerical solution of Yin (1985) is proposed for the
delamination growth paths. In particular, the dimensionless applied load N=Nc is plotted against the
dimensionless axial shortening u �R= �R: Moreover, the delamination growth paths in terms of the
dimensionless applied load N=Nc versus the dimensionless central transverse de¯ection of the plate w=t is
shown in Fig. 26. It can be appreciated that neglecting the fourth order terms in Eq. (99), i.e.
considering Eq. (98), leads to an underestimation of the energy release rate. This re¯ects in predicting a
stable delamination growth for su�ciently large values of the adhesion energy parameter b0, a
circumstance in contrast with our results and those obtained by Yin (1985), where a catastrophic
delamination growth is always found. Moreover, it can be noted from Fig. 25 that the energy approach
solution, Eq. (80), is the best approximation to the exact solution.

It can be ®nally observed that the M-integral approach in the form of asymptotic expansion,
represented by Eq. (99), can only capture the main behavioural features of the delaminated plate. But,

Fig. 24. Thin ®lm model: N=Nc vs. R= �R for constant values of b0�t=T � 0:01�:
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this is obtained only if higher order terms, with respect to the energy approach, are included in the
asymptotic expansion of variables. Obviously, this determines an increasing e�ort in calculations.

5. Conclusions

When a Gri�th type fracture criterion is employed, essentially two classic methods of analyzing
delamination growth behaviour in layered plates are available in fracture mechanics. One is a global
approach, the energy method, directly derived from Gri�th's theory, and based on energy balance
during crack growth. This leads to the de®nition of the energy release rate concept. The other is a local
approach, based on stress intensity factor, which expresses the entity of stress ®eld in the neighbourhood
of the crack tip. It is well-known that both methods are substantially equivalent.

In addition to these two approaches, a number of path independent integrals have been proposed to
calculate the energy release rate. In applying these integrals along special paths it is found that the
energy release rate is a function of the stress resultants acting upon the cross sections adjoining the
crack border. Similar results in the form of jump conditions have been found by means of variational
statements (see, for instance, StoraÊ kers and Andersson, 1988).

Analytical solutions can be obtained by the global approach and path independent integrals for

Fig. 25. Delamination behaviour of a two-layer symmetric circular plate. Applied compression N=Nc versus axial shortening u �R= �R

for constant values of b0:
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appropriate models of damaged laminated plates which allow us investigation of the actual behaviour of
delamination growth.

All the aforementioned methods should lead to the same results, but these results turn out to be
noticeably in¯uenced by the accuracy of the analysis employed. As a matter of fact, in the case of
delamination buckling, a postbuckling solution has to be determined, and its accuracy must be
consistent with the stage of the postbuckling path involved in the delamination condition.

In general, with the exception of some simple problems, it is not possible to obtain closed form
solutions. Thus, it is necessary to use approximate methods, such as asymptotic techniques.

In this work, an asymptotic method has been used to model the delamination buckling and growth of
layered plates by using both the energy and the path-integral approaches. In the latter case the stress
resultants at the crack tip are involved in the energy release rate calculation and therefore accurate
analyses of higher order are required to obtain a satisfactory evaluation of these stresses. In fact, an
inappropriate evaluation of these stresses can lead to very imprecise results, particularly regarding the
postbuckling delamination growth.

A perturbative approach has been used to model the delamination buckling, based on an appropriate
asymptotic expansion of variables involved in the analysis. A general model of the plate has been
analyzed in which an arbitrary buckled con®guration involving global and local instabilities can occur.
The relevant governing equations of the model are constructed in general asymptotic form and some

Fig. 26. Delamination behaviour of a two-layer symmetric circular plate. Applied compression N=Nc versus central de¯ection w=t
for constant values of b0:
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numerical results are also given to show the characteristics of the plate behaviour. Based on the same
approach, autonomous simpli®ed models of the plate (thick column, thin ®lm and symmetric split
models), are also developed.

Comparisons with the various approaches employed to analyze delamination growth behaviour have
been presented, both for the narrow plate and for the circular plate model. It can be concluded from
our results that when a perturbation analysis is performed, the best way to capture the actual behaviour
of a delaminated plate is the global approach with the variation in the advancing delaminated area of
the increment of total potential energy. This is true especially when the postbuckling analysis requires a
greater accuracy, as in the case of a circular plate, because of its remarkably sti� behaviour.
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